Pulsed Linac at 45 mA / TRACKv39 Vs ASTRA Parameters at the end of 325 MHz section

Jean-Paul Carneiro

May 13, 2010

TRACKv39 / ASTRA simulations

- Simulations performed for the FNAL Pulsed Proton Driver at 45mA
- Simulations from RFQ exit to end of the 325 MHz section (~138 meters)
- ▶ Each error simulated with 400 runs and 3D SC on FermiGrid
- ► Cavity Phase and Field Jitter + Sol. Field Jitter + Quad Field Jitter = Gaussian distribution truncated at +/-3 sigma
- All other errors = Uniform distribution

Cavities δ_{ϕ}

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Cavities δ_{ϕ}

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Cavities δ E

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Cavities δ E

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Quad Field δ F

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Quad Field δ F

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Sol. Field δ F

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Sol. Field δ F

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Sol. $\delta \phi_{x}$

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Sol. $\delta \phi_{x}$

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Sol. δ_x

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Sol. δ_x

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

Sol. δ_z

Figure: RMS Size X

Figure: RMS Size Z

Figure: RMS Size Y

Figure: Beam Fraction Losses

Sol. δ_z

Figure: RMS Emittance X

Figure: RMS Emittance Z

Figure: RMS Emittance Y

Figure: RMS Energy Spread

